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A B S T R A C T  

The displacement map related to small polynomial perturbations of the 
planar Hamiltonian system dH = 0 is studied in the elliptic case H -- 
�89 _ 5xl 3. An estimate of the number of isolated zeros for each of 
the successive Melnikov functions Mk(h), k = 1, 2, . . .  is given in terms of 
the order k and the maximal degree n of the perturbation. This sets up 
an upper bound to the number of limit cycles emerging from the periodic 
orbits of the Hamiltonian system under polynomial perturbations. 

1. I n t r o d u c t i o n  

We consider  po lynomia l  pe r t u rba t i ons  of the  Hami l ton ian  vector  field wi th  a 
ly2 i x 2  1 3. Hami l t on i an  H ( x , y )  = ~ § - ~x  . 

= y + e l ( x ,  y,  e), (1) 
= - x  + x 2 + eg(x ,  y, c). 

In (1), f and  g are  po lynomia l s  of x, y wi th  coefficients depend ing  ana ly t i ca l ly  

on the  smal l  p a r a m e t e r  c. The  Hami l ton ian  H is known from the  unfolding of a 

cusp s ingular i ty ,  called the  Bogdanov-Takens  unfolding.  The  u n p e r t u r b e d  vector  

field has  a per iod ic  t r a j e c t o r y  for Hami l ton ian  levels in (0,-~). 
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Let us denote n = max (deg f ,  degg). We will assume that n > 2. Using the 

energy level H = h as a parameter, h E (0, ~), we can express the first return 

mapping P of (1) in terms of h and r The corresponding displacement function 

d(h, E) = P(h ,  ~) - h has a representation as a power series in ~, 

(2) d(h,c) = cMl(h)  + ~2M2(h) + ~3M3(h) + . - . ,  

which is convergent for small r The zeros in (0, ~) of the first nonvanishing 

Melnikov function Mk(h) in (2) determine the limit cycles in (1) emerging from 

periodic orbits of the unperturbed Hamiltonian system. In more general context, 

the problem (posed by V. Arnol'd [1]) of estimating the number of zeros of the 

Melnikov functions Mk(h), given by Abelian integrals, is sometimes called the 

weakened (infinitesimal) 16th Hilbert problem. 

If Ml(h)  =- 0 in (2), then the perturbation is said to be conservative (but this 

might be misleading). For nonconservative perturbations, system (1) has been 

studied by Petrov [9], who found the exact estimate of n - 1 for the number of 

zeros of Ml(h)  in (0, ~), and by Marde~i~ [7], who gave the same sharp estimate 

for the total number of limit cycles in (1) bifurcating in the finite part of the 

(x, y)-plane. The "conservative" case was considered by Bao-yi Li and Zhi-fen 

Zhang [6]. Under the restriction M2(h) ~ 0, they obtained a sharp upper bound 

of 2 n - 2  (n even) and 2 n - 3  (n odd) for both the zeros of M2 and the cycles of (1) 

in the finite plane. In this paper, we consider the problem without any restriction. 

We give a general estimate for any Mk(h) and obtain the exact estimate of 3n - 4 

for both the zeros and the cycles, provided Ml(h)  = M2(h) - O, M3(h) ~ 0. The 

general result is 

THEOREM 1 : Assume that Mk (h) is the Brst Melnikov function in (2) which does 

not vanish identically. Then Mk(h) has no more than k(n - 1) zeros, counting 

the multiplicity. 

It turns out that the result in Theorem 1 is exact only for k -- 1 or k -- 2 and n 

even. For all other cases, the estimate can be improved by one. 

THEOREM 2: Assume that Mk(h) is the first Melnikov function in (2) which does 

not vanish identically. I l k  >_ 3 or k = 2 and n is odd, then Mk(h) has no more 

than k(n - 1) - 1 zeros, counting the multiplicity. 

Apparently, this estimate may be sharp for the first few k only. There should 

exist a k = k(n) after which the exact upper bound becomes stationary, see e.g. 

Proposition 4.1 in [2]. For instance, in the quadratic case n -- 2, it is well known 

that  all Melnikov functions beginning from the second one M2 can have at most 
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two zeros [4], [10]. However, for n > 3, the level at which the number of zeros of 

Mk will stabilize, is unknown even as a hypothesis. In this connection, we prove 

PROPOSITION 1: For k = 3, the upper bound from Theorem 2 is sharp. 

Moreover, in Section 4 below we provide an example of a cubic perturbation with 

Ml(h)  = M2(h) = M3(h) - 0 and M4(h) having seven zeros. This fact suggests 

that the upper bound from Theorem 2 should be exact also for k -- 4, n _> 3. 

It is a well-known fact [6], [7] that the upper bound for the number of zeros of 

the related Melnikov function in (0, ~) also yields an estimate for the cycles. For 

a completeness, we formulate without proving a similar result. The proof is the 

same as in [6], [7]. 

THEOREM 3: Assume that Mk(h), k > 3, is the first nonvanishing Melnikov 

function in (2). Then system (1) has no more than k(n - 1) - 1 limit cycles in 

the finite plane. 

We note that  limit cycles escaping to infinity as e -+ 0 could appear in (1). They 

cannot be studied by inspecting the zeros of Mk(h). For this reason we emphasize 

the fact that  Theorem 3 concerns the limit cycles in the finite plane only. 

In the table below, we sum the known results about exact upper bounds for 

both the cycles and zeros obtainable from kth order analysis (in e) of an n th  

degree polynomially perturbed system (1): 

Table 1 

n = l  

2 

3 
4 

5 

2m 
2 m + l  

k = l  2 3 4 5 . . .  

0 0 0 
1 2 2 

2 3 5 
3 6 8 
4 7 11 
: : : 

2 m - 1  4 m - 2  6 m - 4  

2m 4 m - 1  6 m - 1  

0 0 
2 2 

7 

The paper is organized as follows. In the next Section 2 we consider the 

polynomial one-forms and their cohomology decompositions related to H (we 

accept the terminology from [3]). In Section 3 we use Franqoise's recursive method 

[2], [5], [10], [11] to obtain an upper estimate for the degree of the polynomial 
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one-form that, when integrated along the oval c {H = h}, yields Mk(h). Based 

on this, we then prove Theorems 1 and 2. In Section 4 we provide, for k = 3, 

an estimate from below for the number of zeros, needed to verify Proposition 1. 

Finally, we give an example suggesting that a similar result is true for k -- 4 as 

well. 

2, 

We consider polynomial one-forms of degree m, 

= g(x, y)dx - f ( x , y ) d y  = ~ b,jx'yJdx - 
i4-j~_m 

R e l a t i v e  c o h o m o l o g y  d e c o m p o s i t i o n s  o f  o n e - fo rm s  

aijxiyJ dy, 
i4-j~m 

as well as polynomial one-forms of we igh ted  degree m, 

0) =g(x, y, H)dx  - f ( x ,  y, H)dy 

-: ~ bijkxiY jHkdx  - ~ aijkxiYJHkdy �9 
iWjT2k~_m iTj+2k<_m 

For the polynomials f ( x , y , H )  and g (x , y ,H)  themselves we say they are of 

weighted degree m. In what follows, we will write for short w-deg0) -- m and 

respectively w-deg f = m. The lead ing  p a r t  of each polynomial (or one-form) 

of weighted degree m involves just the terms having weighted degrees exactly m. 

Denote wij ~ xiyJdx, aij = xiyJdy and then put ~o = 0)ol = ydx, ~1 ~ o)11 = 

xydx,  

J k ( h ) = f  ~k, k - - 0 , 1 ,  h e ( 0 , ~ ) .  
J H  =h 

Below, [s] denotes the entire part of s. We first prove 

LEMMA 1 (Relative cohomology decomposition of one-forms): Any  polynomial 

one-form w of degree m can be expressed as 

(3) w --- dR(x,  y, H) 4- r(x, y, H)dH 4- a(H)~o 4-/~(H)~I 

ly2 1 2 1 3 and: where H - -  ~ 4- ~x - sx  

(i) R ( x , y , H )  and r ( x , y , H )  are polynomials of weighted degrees m 4- 1 and 

m - 1 respectively. 

(ii) For x = O, the leading part  of r vanishes and the leading part  of R does 

not depend on H. 

(iii) a(h) and fl(h) are polynomials of degrees L2~l( m - 1)] and L211( m - 2)] 

respectively. 
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Proof: The proof consists of straightforward calculations. Let i + j < m. We 

have 
�9 �9 i 

(TiJ __ J 1 ld(X~y~+l) _ -2" + 1 ~  

so we only need to consider the forms wij. 
1) Assume first that i > 2. Then 

02ij --xiyJdx = xi-2yJd x 3 = xi-2yJd x 2 + ~y - H 

=xi - lyJdx  + xi-2yj+ldy _ x~-2yJdH 

Hence, it remains to consider the one-forms yJdx and xyJdx. 
2) Assume that j is even. Then 

yJ =(2H - x 2 + ~X3) j/2 

j/2 

k=O 

j/2 k 
E E ( _ l ) k + l ( J ; 2 ) ( ~ )  j /2-k 21 j/2-k 2k+l 

= 2 (5) H x 
k=O /=0 

j/2 k 
-- E E Cj k ,(2-)IHJ/2-kX2k+l. 

) ~ 3 j 
k=O l-~O 

Hence 

j/2 k Cj,k Z 2 Z j/2-k 2k+l+l 
YJdx = E E  2k + l  + l ' (-~) H dx 

k = 0 / = 0  

Cj,k,l ~ 2k+l+t j /2-k 
~d 

2k + l + 1 (g)  

- ECJ'k'12k+l+l'3"1=o ] dH 

Cj,k,l x2(k-O+l(x2 + y2 _ 2H)IHJ/2-k 
=d 2 k + l + l  

[ j l2 - t  k ) 
- [ ~  ~Cj,k,t2k+/+lJ/2-k-x2(k_O+l(x2+y2_2H)lHJ/2_k_l dH. 
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We proceed in a similar way with xyJdx. Thus we have obtained that in the 

considered case the polynomials R and r in (3) take the required form. 

3) Assume now that j > 3 is odd. Then we get 

yJdx =yj-2(2H - x 2 + ~x3)dx 

: 2 H y J - 2 d x -  yj-2d (~x3 - ~x 4) 

1 2 1 2 _ ~ H + ~ x H  ) : 2 H y j - 2 d x -  yj-2d (~x2 + -8y - ~xy 

3 Hyj_2d x + j - 2 Jdx 1 " 2 4j y - ~xy 3- dx 

lj 1 
d(1 - 2x)y j + ~(1 - 2x)yj-2dH. 

After solving this equation with respect to yJdx one obtains 

yJ dx -- 6j ~ Hyj_ 2 dx_ , .j.j_~ xyJ_2 d x 
3j + z o3 -~ 

3j 1 -t- 2 d(1 - 2x)yj + 3 j ~  (1 - 2x)YJ-2dH" 

In a similar way we get 

xyJ dx 1 -~yJdx- 6j 4Hxyj_2d x j 4xyJ_2d x 
3j + 3j + 3j + 

1 
4d(1. + x - 2x2)y j 

3j + 
J + .--=-7-=..(1 + x - 2x2)yj-2dS. 

~3~-~ 

From the last two equations we get that, with some positive aj, bj, cj, 

(4) 
yJ dx =(ajH (j-l)/2 + 1.o.t.)~o + (1.o.t.)~l -I- dRjo + rjodH, 

xyJdx ~-(cjH (j-1)/2 + 1.o.t.)~0 + (bjH (j-1)/2 + 1.o.t.)f~l 

+ dRjl + rjldH, 

where Rjk, rjk satisfy the requirements in (i), (ii) and by 1.o.t. we have denoted 

the lower order terms in H. 

By 1), 2) and 3), the proof of Lemma 1 is complete. II 
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Remark 1: The quotient vector space f~H of all polynomial one-forms co = 

g(x, y)dx - f ( x ,  y)dy, modulo polynomial one-forms dR + rdH,  was consid- 

ered firstly by Petrov [8], without specifying the structure of R and r. ~)H 

is a free module over the ring of polynomials R[h], under the multiplication 

P(h)& -- P(H)co where c5 denotes the equivalence class corresponding to co. 

LEMMA 2: Assume that the polynomial one-form w of degree m satisfies the 

identity fH=h co -- 0 for h �9 (0, 1). Then 

(5) w = dR(x, y, H)  + r(x, y, H ) d H  

where, in addition to (i) and (ii), 

(iv) The leading part of r is even with respect to y and has the same evenness 

with respect to x as m - 1. 

(v) The leading part of r is a constant multiplier of f o  mYra-2( s, H)ds  (m 

even) and o f f o ( m -  1)sym-3(s ,H)ds  (m odd), where y2(s, H ) =  2 H -  s2+  2s3. 

Proof: By Lemma 1, we have 

(6) I(h)  = fH=h w = a(h)Jo(h) + /3(h)Jl(h) 

and I (h)  - 0 is equivalent to a(h) --/3(h) - 0, see [6], [7], [9]. Hence, from part 

3) of the proof of Lemma 1 above, all coefficients at yJdx and xyJdx, j odd, will 

vanish. Then (iv) follows from part 2) of the preceding proof. To obtain (v), let 

us assume for definiteness that m is odd. Then the leading part of r comes from 

the one-form wl,m-1 = xym- ldx .  Denoting U(x, H)  = fo  s Y m - l ( s , H )  ds, then 

Wl,m-1 = dU(x, H)  - UH(X, H ) d H  and, since YYH = 1, (v) follows. | 

COROLLARY 1: Any  polynomial one-form w of weighted degree m can be decom- 

posed into the form (3) where (i), (iii) still hold. I f  fH=h w -- O, then (5) holds 

as well. 

COROLLARY 2: Any integral I (h)  = fH=h co of polynomial one-form of weighted 

degree m has at most m - 1 isolated zeros in (0, I)" 

Proof: From Corollary 1, I (h)  can be expressed by (6). Then the well-known 

result of Petrov [9] applies to this integral which proves the assertion. | 
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COROLLARY 3: Let w be a polynomial one-form of odd weighted degree m with 

a leading part having a multiplier x 2. Then: 

(a) I(h) = fH=h w has at most m - 2 isolated zeros in (0, ~). 

(b) In the decomposition (3), the leading part of r has a multiplier x 2. 

Proof: The leading part of co is a linear combination of one-forms xi+2yJHkdx, 

xi+2yJHkdy, 2 + i + j  + 2k = m. The first form and the second one (when i > 0) 

can be reduced to lower-degree forms, as we have done in point 1) of the proof of 

Lemma 1. It remains to consider x2yJHkdy. Since j is odd now, an integral of 

this form is zero. Therefore in (iii), a(h) and ~(h) are polynomials of degrees at 
1 1 most [7(m - 2)] and [g(m - 3)], respectively. From this observation, (a) follows. 

F~rther we have, modulo exact forms, that 

k lx2yJ+lHk_ld H 2 x2 yJ Hk dy - j  + j + 1 xyj+lHkdx,  

henceforth (b) follows from point 2) in the proof of Lemma 1. | 

3. H i g h e r - o r d e r  Meln ikov  func t ions  and  e s t ima t ions  of  t he i r  zeros 

To apply Fran~oise's procedure [2] for a calculation of the higher-order Melnikov 

functions Mk(h), we write system (1) in a Pfaffian form 

(7) dH - -  e~) 1 - -  C2022 . . . . .  0 

where wj = gj (x ,y)dx  - f j ( x , y )dy  with degfj  _< n, deggj <_ n. 

L E M M A  3 (Fran~oise's recursion formula, cf. [2], [5], [10]): Assume that for some 

k > 2, Ml(h) . . . . .  Mk-l (h)  -- 0 in (2). Then 

Mk(h) = f Ok 
J H  =h 

(s) 

where 

( 9 )  ~ I : C d l '  ~m =Wm + E riwj, 2 <_m < k, 
i + j = m  

and the functions ri, 1 < i < k - 1 are determined successively from the repre- 

sentations ~i = dRi + ridH. 

Proof: 

that  

We obtain the proof by induction, cf. [2], [10]. The identity (3) yields 

H ~i = 0 ** ~i = dRi + ridH. 
=h 
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We multiply (7) by 1 + dr1 + . . .  + r and then rearrange the monomials in the 

resulting expression to obtain 

dH + ~(rldH - Wl) + E2(r2dH - r l W l  - w 2 )  - I -  - �9 . 

+ ck(rk dH - rk-lo31 . . . . .  rlo3k-1 -- o3k) ~- O ( c k + l )  - 

By (9), this is equivalent to 

dH = (edR1 + e2dR2 + . . .  + s k - l d R k - l )  + ek(qSk -- rkdH) + O(ek+l). 

We integrate the last equation along the phase curve 7 used in the determination 

of the first return map. Taking into account that  

~ d g = d ( h , c ) ,  ~(gd}~l- l -c2dR2-[- . . . - l -Ek- ldRk_l)  ~-O(c k+l) 

(the last estimate follows from the fact that  d(h,e) = O(ek), cf. [5]), we obtain 

Note that  the above argument is also valid in a neighborhood of the saddle loop 

contained in {H = -~}, cf. [4]. I 

COROLLARY 4: For any k, 4)k is a polynomial one-form of weighted degree kn - 

k + l .  

Proof: From Lemma 1, ri(x, y, H) is a polynomial and w-degr~ = w-degqSi - 1. 

Then, by Lelnma 3, we get reeursively that  w-deg ~1 = n, w-deg qSm = n + 

max (w-deg r i )  - - - -  r t  - -  1 -1-w-deg q5,~_1 which yields the result. | 

Proof of Theorem 1: From Corollaries 2 and 4, Theorem 1 follows. | 

P roof  of Theorem 2: (i) Let n be odd. Then, for any k, Ck is a form of 

odd weighted degree m k =  k(n - 1) + 1. Assume that  Ml(h)  = 0. We write 

r l  = r + r where r l  and r are the leading and the lower part  of r l  accordingly. 

This induces a corresponding decomposition ~2 = o32 + rlwl = (~2 + (~2 where 

w-deg~2 = 2n - 2 and ~2 = rl&l. From Lemmas 1, 2 and since ml  = n is odd, 

we see Pl has x 2 as a multiplier. Then Corollary 3, applied to ~2, yields that  

M2(h) has at most m2 - 2 = 2n - 3 zeros and that  r2 has x 2 as a multiplier. If 

Ml(h)  =- M2(h) = 0, we repeat the above argument for r = w3 + rlw2 + r2o31, 

~3 = r2&l, and so on. Theorem 2 is proved for an odd n. 
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(ii) Assume that  n is even. Then keeping the preceding notation, we prove the 

lemma below, from which Theorem 2 is a consequence. Indeed, ?~3 = 0 implies 

that  rk = 0 for all k > 3, hence w-deg~k = k(n - 1), k > 3 and the result in the 

considered case follows from Corollary 2. Theorem 2 is completely proved. II 

L E M M A  4:  Let n be even and Ml(h)  = Ms(h) = O. Then r3 = O. 

Proof." Recall that  rl  and /~1 are of odd weighted degrees n - 1 and n + 1, 

respectively. According to Lemma 2 (v) we have rl  = b f  o Y'~-2(s, H)ds. Then, 

modulo lower degree forms, 

(10) r = rld~l = ~1(d1~1 + ~ldH) = d(rlR1) + (r21 - [~l~l,u)dH - Rlrl ,xdx.  

Note that  by Lemma 2 (iv) z~l, considered as a weighted polynomial, is an even 

function of y and an odd function of x. Writing/~1 as a sum of an even and odd 

part  with respect to y,/~1 =/~1 + 01, we see that/~1 has x as a multiplier, while 

by Lemma 1 (ii), 01 = ay n+l + O(x2). Then, ()l~l,xdx = aby2~-ldx + w where 

w is a form of an odd weighted degree 2n - 1 having a multiplier x 2. Therefore, 

'H r  Y2n-ldx +cr(h)J~  
=h =h  

where deg a,  ~ < n - 2. Since M2(h) = 0 this means that  ab = 0, thus either 

~1 = 0 or/~1 (0, y, H)  = 0. In the latter case, both/~1 and § have a multiplier 

x, and moreover, El~l,xdx consists of one-forms xl+iyJHkdx, i , j  even. Using 

(10), Corollary 3 and the same argument as in the proof of Lemma 1, part  2), 

we see that  § will have a multiplier x 2 in this case. 

Now, if § = 0, then r 3  = 0. Provided/~1(0, y, H)  = 0, then the one-form y~dy 
is missing in wl = gl (x, y)dx - f l(X, y)dy. Thus § will include the one-forms 

(of weighted degree 3n - 2) xi+2yJHkdx, xi+3yJHkdy, that  are all reduced to 

lower-degree forms. Therefore r3 = 0 and the lemma is proved. | 

4. E s t i m a t i o n s  f r o m  b e l o w  

Proof of  Proposition 1: It  suffices to provide an example of a particular system 

for which Mj(h)  has just 3n - 4 zeros in (0, 1). Assume first that  n > 2 is even. 

To obtain the result in Table 1 for k = 3, we take in (7) Wl = d{xA(y) + B(y)} + 
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ri(x,  y)dH, w2 = d{xC(y) + D(y)}, w3 = {xP(y)  + Q(y)}dx where rl  = xy n-3, 

A(y) = aly 3 + a2y 5 + . . .  + an/2_lY n- l ,  
B(y) = bly 3 + b2y 5 + " "  + b~/2y ~+1, 

(11) C(y) = c~y 4 + c3y 6 + " "  + c~/~y ~, 
D(y) = d2y 4 + d3y 6 + ' "  + d~/2y ~, 

P(Y) = PoY +PlY 3 + " "  + Pn/2-1Y n- l ,  
Q(y) = qoy + qly 3 + " .  + qn/2-1y ~-1. 

that Mffh) = M~(h) - O, M3(h) = fH=h(~3 + ~,~2 + ~2~).  This choice implies 

First, we have 

H r l w 2  
~ h  

H=h{x2y'~-aC'(y) + xy ' -3D' (y )  }dy + xyn-3C(y)dx 

[ {x[yn-~C(y) - 2C1(y)] - Dl(y)}dx 
JH =h 

where C~ = yn-3C',  D~I = y~-3D'. Using (11), we get via direct calculations 

that  

with 
n - 2k - 3 da = 2k 3 dk. 

5k -- n + 2 k -  3 ck' n + 2 k -  

Second, to evaluate r2, we obtain (modulo exact forms) 

rlwl =xy~-3{A(y)dx  + xA'(y)dy + B'(y)dy} + x2y2'~-6dH 

= - {x[2Al(y) - yn-3A(y)] + Bl (y)}dx  + x~y2~-6dH, 

with A t = yn-3A',  B~ = yn-3B'.  We next take y2 = y2(x ,H ) = 2H - x 2 + ~x 3 

and denote 

& ( x ,  H) = 812Al(y(8, H)) - y'~-~(8, H)A(y(8, H))Ie~, 

/i B~(x,H) = S~(y(~,H))&. 

Then r lwl  = r2(x, y, H)dH (modulo exact forms) where 

Thus 

r2(x, y, H) = Ol-iA2(x, H) + OHB2(x, H) + x2y 2n-6. 

g=h r2wl = fH=h r2d(xA(y) + B(y)} + r2rldH 

= - / H  (xA(y)  + B(y)}(O~r2dx + Our2dy + cgHr2dg}. 
=h 
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An easy calculation yields 

OxOHA2(x,H) =x[2A~(y) - (n _ 3)yn-4A(y) _ y~-3 (y)]OHy(X, H) 

=x[yn-4d'(y) - (n - 3)yn-5A(y)]. 

Similarly, OxOgB2(x, H) = y~-4B'(y). We use all this to obtain 

/ , : h r 2 w l  = --(n-- 3 ) / H : h X 2 { 3 A ( y )  + 2B(y)}y 2n-7 dy 

-/H=h{XA(y)+B(y)}{x[2y2n-6+yn-nA'(y)--(n-3)yn-5A(y)] + yn-4 B' (y) } dx. 

Finally, we make use of (11) and, after long but  elementary calculations, we 

obtain  

r2wl = - E (xvk + + 1.o.t. dx. 
=h =h k=0 

2 In this formula, v0 = 0, wo = (n + 1)bn/e, and for k = 1 , . . . ,  n/2 - 1, 

vk = ~ [ ( 4 -  2Y)a~/2_i + (n - 2k + 5)bn/2_~] a~/u-j 
i + j = k  

12 - 4k 2n - 4k + 6 b 

+ 3n 2k 3 a'~/2-k+l + 3n _ _ ~-~--~ nt2-k+l (a~12 = 0), 

wk = E (n - 2j + 1)bnl2_ib~12_ j. 
i + j = k  

After we express vk and wk, k > 0, in the form 

vk = { ( n  - 2k + 5)b~/2}an/2-k + Vk(an/2-k+l, bn/2-k+l,..., an~2, b~/2), 

wk = { ( 2 n  - 2k + 2)bn/2}b~/2_k + Wk(b~/2-k+l,..., b~/2), 

we see tha t  they are all independently free constants,  provided b~/2 ~ O. Thus  

we get, with all constants  independent,  

Ma(h) = f (wa + rlw2 + r2wl) 
JH =h 

3n/2--3 3n/2--2 

/o =h E ~kxY2k+ldx+ E akY2k+ldx" 
k=0 =h k=0 

The  last formula guarantees,  by (4), tha t  M3(h) = ~(h)Jo(h)+ ~(h)J1 (h) where 

3n 2, d e g ~  = ~ - 3 and all of the 3n - 3 coefficients in ~, ~ are d e g ~  - 2 
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i ndependen t ly  free. Thus  we can choose the  coefficients in (11) so t ha t  M3 will 

have jus t  3n - 4 zeros in (0, ~). The  proof  for an even n is complete .  

Cons ider  now the  case when n > 2 is odd.  

We take  Wl = d{x2 A(y)  + x B ( y )  + S(y)  } + rl (y )dH,  ~2 = d{x2C(y )  + x D ( y )  }, 

w3 = { x P ( y )  + Q ( y ) } d x  where r l  = yn-2 ,  

A(y)  -- aoy + aIy  3 + ' "  + a(~_3)/2y n-2,  

B ( y )  = boy + bly 3 + ' "  + b(~-l) /2y ~, 

S ( y )  = 80y  A- S l y  3 + "'" A- 8 ( n _ l ) / 2 y  n ,  
-{-C .n - -1  C(y)  = e ly  2 -{- c2y 4 + ""  (n-1)/2y , 

D(y)  = d ly  2 + d2y 4 + ' "  + d(~_l)/uy n - l ,  

P(Y)  -- PoY + P l Y  3 + " "  P(n-3)/2a , 
Q(y)  = qoy + qly  3 + . . .  + q(n-3)/2y ~-2. 

The  remain ing  pa r t  of the  proof  in this  case repea ts  the  a rgument  s t a t ed  above. 

The  final fo rmula  we ob ta in  for an odd  n is 

(3n-5)/2 

M3(h) = /H (~3 + r l w 2  +r2wl) = /H E (~kxy2k+I +(~kY2k+l)dx" 
=h =h k=0 

We will omi t  the  detai ls .  P ropos i t ion  1 is proved. | 

Below we cons t ruc t  a cubic  p e r t u r b a t i o n  in (1) t ha t  has seven cycles, ob ta ined  

from four th -order  analys is  (in g). We take  in (7) wl = dRl(X,  y, H)  + r l ( x ) d H  

where 

R1 = axy  3 + by 4 + c ( l x 2 y  2 --~x3 2H_.~.~x19 _4 -{-54x3)' r l  = c(x 2 -- 2x).  

The  one-form wl is so chosen (this is the  most  difficult pa r t  of the  cons t ruc t ion)  

t ha t  rlWl = r2dH,  r2wl = ~3dH, ~3wl = ~4dH+ ((~3H 3 + - -  ")~o + (/33H 3 + ' "  ")~1 

(here and  below, the  equal i t ies  are  assumed modulo  exact  forms).  Next ,  one can 

take  w2 = d(ol2xy 2 + ~2x2y2), w3 = d ( ~ l y  3) and w4 = (aoy  + /~oxy  + a ly3 )dx .  

As r lw  2 ~- ~3 d H  we obta in ,  wi th  r3 = r3 + r3 ,  t ha t  Ok = r k d H  for k = 1, 2, 3. 

Thus  Mk(h )  - 0, k = 1,2,3 .  To ca lcula te  r2 and r3, we wr i te  R1 = axy  3 + Ro 

and  consider  /-to as a funct ion of x and  H only ( this  is poss ible  since y2 = 

2x3) Then  2 H  - x 2 + ~ . 

r l (dRo  + r l d H )  = (r 2 + r l R o g ) d H  + r lRo~dx  

= (r~ + r lRoH -- E i H ) d H  = r o ( x , H ) d H  

where  E l ( x , H )  = f o  r l ( S ) R o , ( s , H ) d s .  Since (x 2 - 2x )d (xy  3) = 2y3dH,  one 

ob ta ins  

r2 = 2acy 3 + r 2 + r lRoH -- E1H. 



282 I.D. ILIEV Isr. J. Math. 

Further ,  we have 

'r2~l =(2acy 3 4- ro)[d(axy 3 3. Ro) -F rldH] 

=2acy3dRo + 2acy3rldH + rod(axy 3) 

3. 2acy3d(axy 3) + rodRo + rorldH. 

After s t raightforward but  long calculations, and making use of the formulas from 

point  3) in the proof  of Lemma 1, one obtains 

+ rod(axy3) = [8abc(2x 2 + y2  _ x3)y3 + ~ac2x2y3]dH. 2acy3 dRo 

Next,  we have 

rodRo = - Ro(roHdH + roxdx) 
! 

= -- RoroHdH - R0(2rlr~ q- rlRoH -}- rlROxH -- ElxH)dX 

= - RoroHdH - R0r~ (2rl + RoH)dx = (E2H -- RoroH)dH, 

with E2(x, H) = fo  Ro(s, H)r~(s)[2rl(s) + Roll(s, H)]ds. In combination,  all 

this yields 

r3 =8abc(2x 2 + y2 _ x3)ya + 4ac2(5x2 _ x)y  3 

- E3H + E2H -- RoroH + r0r l ,  

4 
r3=c[j32x 4 + 5(a2  - j32)x 3 - 2a2x2], 

where E3(x, H) = a2Cfo y6(s, H)ds. Writing 43 as a sum 43 = e3 + 03 of an even 

and odd function, we next  have (modulo forms dQ + qdH) 

(12) r3wl • (e3 3. 03)[d(axy 3 + Ro) + rldH] = (-axy3eax + 03Rox)dx. 

Using the functions we introduced, we get 

eax -~ -- Eaxtt + E2zH -- RoxroH -- RoroxH 3. roxrl 3. ror'l 

= -- E3ztt 3- r'lROH(2rl 3- ROH) 3- r'll~RoHH -- Roz(rlROHH -- E1HH) 

-- ROr~ROHH + r i ( 2 r l  -~- ROH)T1 -~ (1"12 + r l R 0 z  -- E,H)r~ 
i 2 

= -- E3xH -- Rox(rlROHH -- E1HH) ~- r l ( 3 r l  + 4rlROH + P~H -- E1H). 

Calculat ing 

=4t 2(x 2 - x) + c(3  4 2 2%3 
- ~xy2 _ 5 + 4x2)' 

RoH =4by 2 - "~cx 2, 

S lH  ~bc(~xh -Ux4  -{- a X 3 )  - e 2 ( ~ x 4  - 8x3)'15 

Each =6a2ey 4 
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and replacing in (12), we obtain (this is a rather long and boring procedure which 

we omit here) 

/H=h = ac /H=h (6a2xy 7 - v16 bcy 7 + ~ c 2 x y 5  ) dx" 

A much more easy calculation yields 

(0J4 § r10)3 § r20)2§ 730J1) 
=h 

= f [(a0 § ~ox)y  + (o~1 § 2cfl1 - 2Cfllx)y 3 T 2at(a2 § 2j32x)y5]dx. 
JH =h 

If we choose the coefficients ak,  Ha, a, b, c in a proper way, then clearly Ma(h)  

will have seven zeros in (0, 1). This completes our construction. 

This last example suggests that the upper bound in Theorem 2 should be exact 

for k = 4, n ~ 3 as well. 
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